This page catalogues the number of distinct pitch class sets (hereinafter referred to as PC sets) to be found amongst n-Tone Equal Temperament (nTET) systems, for n = 2 to 31.
In addition to bulk statistics for each n, we also show their distributions amongst their corresponding k-sets for k = 1 to n. For example, the number of PC sets in 12TET is 351, and they are distributed as 1 1-set, 6 2-set, 19 3-set, 43 4-set, 66 5-set, 80 6-set etc.
The first table shows those PC set frequencies
The second table enumerates the non-symmetric PC sets.
The third table enumerates symmetric PC sets.
The fourth table enumerates the even rarer sets exhibiting rotational repetitions.
Table 1a - Number of k-sets within nTET for 2 ≤ n ≤ 21
k\n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 10 | 10 |
3 | 1 | 1 | 2 | 4 | 5 | 7 | 10 | 12 | 15 | 19 | 22 | 26 | 31 | 35 | 40 | 46 | 51 | 57 | 64 | |
4 | 1 | 1 | 3 | 5 | 10 | 14 | 22 | 30 | 43 | 55 | 73 | 91 | 116 | 140 | 172 | 204 | 245 | 285 | ||
5 | 1 | 1 | 3 | 7 | 14 | 26 | 42 | 66 | 99 | 143 | 201 | 273 | 364 | 476 | 612 | 776 | 969 | |||
6 | 1 | 1 | 4 | 10 | 22 | 42 | 80 | 132 | 217 | 335 | 504 | 728 | 1038 | 1428 | 1944 | 2586 | ||||
7 | 1 | 1 | 4 | 12 | 30 | 66 | 132 | 246 | 429 | 715 | 1144 | 1768 | 2652 | 3876 | 5538 | |||||
8 | 1 | 1 | 5 | 15 | 43 | 99 | 217 | 429 | 810 | 1430 | 2438 | 3978 | 6310 | 9690 | ||||||
9 | 1 | 1 | 5 | 19 | 55 | 143 | 335 | 715 | 1430 | 2704 | 4862 | 8398 | 14000 | |||||||
10 | 1 | 1 | 6 | 22 | 73 | 201 | 504 | 1144 | 2438 | 4862 | 9252 | 16796 | ||||||||
11 | 1 | 1 | 6 | 26 | 91 | 273 | 728 | 1768 | 3978 | 8398 | 16796 | |||||||||
12 | 1 | 1 | 7 | 31 | 116 | 364 | 1038 | 2652 | 6310 | 14000 | ||||||||||
13 | 1 | 1 | 7 | 35 | 140 | 476 | 1428 | 3876 | 9690 | |||||||||||
14 | 1 | 1 | 8 | 40 | 172 | 612 | 1944 | 5538 | ||||||||||||
15 | 1 | 1 | 8 | 46 | 204 | 776 | 2586 | |||||||||||||
16 | 1 | 1 | 9 | 51 | 245 | 969 | ||||||||||||||
17 | 1 | 1 | 9 | 57 | 285 | |||||||||||||||
18 | 1 | 1 | 10 | 64 | ||||||||||||||||
19 | 1 | 1 | 10 | |||||||||||||||||
20 | 1 | 1 | ||||||||||||||||||
21 | 1 | |||||||||||||||||||
k/n | 2 | 3 | 5 | 7 | 13 | 19 | 35 | 59 | 107 | 187 | 351 | 631 | 1181 | 2191 | 4115 | 7711 | 14601 | 27595 | 52487 | 99879 |
Table 1b - Number of k-sets within nTET for 22 ≤ n ≤ 31
k\n | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 11 | 11 | 12 | 12 | 13 | 13 | 14 | 14 | 15 | 15 |
3 | 70 | 77 | 85 | 92 | 100 | 109 | 117 | 126 | 136 | 145 |
4 | 335 | 385 | 446 | 506 | 578 | 650 | 735 | 819 | 917 | 1015 |
5 | 1197 | 1463 | 1771 | 2126 | 2530 | 2990 | 3510 | 4095 | 4751 | 5481 |
6 | 3399 | 4389 | 5620 | 7084 | 8866 | 10966 | 13468 | 16380 | 19811 | 23751 |
7 | 7752 | 10659 | 14421 | 19228 | 25300 | 32890 | 42288 | 53820 | 67860 | 84825 |
8 | 14550 | 21318 | 30667 | 43263 | 60115 | 82225 | 111041 | 148005 | 195143 | 254475 |
9 | 22610 | 35530 | 54484 | 81719 | 120175 | 173593 | 246675 | 345345 | 476913 | 650325 |
10 | 29414 | 49742 | 81752 | 130752 | 204347 | 312455 | 468754 | 690690 | 1001603 | 1430715 |
11 | 32066 | 58786 | 104006 | 178296 | 297160 | 482885 | 766935 | 1193010 | 1820910 | 2731365 |
12 | 29414 | 58786 | 112720 | 208012 | 371516 | 643856 | 1086601 | 1789515 | 2883289 | 4552275 |
13 | 22610 | 49742 | 104006 | 208012 | 400024 | 742900 | 1337220 | 2340135 | 3991995 | 6653325 |
14 | 14550 | 35530 | 81752 | 178296 | 371516 | 742900 | 1432860 | 2674440 | 4847637 | 8554275 |
15 | 7752 | 21318 | 54484 | 130752 | 297160 | 643856 | 1337220 | 2674440 | 5170604 | 9694845 |
16 | 3399 | 10659 | 30667 | 81719 | 204347 | 482885 | 1086601 | 2340135 | 4847637 | 9694845 |
17 | 1197 | 4389 | 14421 | 43263 | 120175 | 312455 | 766935 | 1789515 | 3991995 | 8554275 |
18 | 335 | 1463 | 5620 | 19228 | 60115 | 173593 | 468754 | 1193010 | 2883289 | 6653325 |
19 | 70 | 385 | 1771 | 7084 | 25300 | 82225 | 246675 | 690690 | 1820910 | 4552275 |
20 | 11 | 77 | 446 | 2126 | 8866 | 32890 | 111041 | 345345 | 1001603 | 2731365 |
21 | 1 | 11 | 85 | 506 | 2530 | 10966 | 42288 | 148005 | 476913 | 1430715 |
22 | 1 | 1 | 12 | 92 | 578 | 2990 | 13468 | 53820 | 195143 | 650325 |
23 | 1 | 1 | 12 | 100 | 650 | 3510 | 16380 | 67860 | 254475 | |
24 | 1 | 1 | 13 | 109 | 735 | 4095 | 19811 | 84825 | ||
25 | 1 | 1 | 13 | 117 | 819 | 4751 | 23751 | |||
26 | 1 | 1 | 14 | 126 | 917 | 5481 | ||||
27 | 1 | 1 | 14 | 136 | 1015 | |||||
28 | 1 | 1 | 15 | 145 | ||||||
29 | 1 | 1 | 15 | |||||||
30 | 1 | 1 | ||||||||
31 | 1 | |||||||||
k/n | 190745 | 364723 | 699251 | 1342183 | 2581427 | 4971067 | 9587579 | 18512791 | 35792567 | 69273667 |
Table 2a - Number of non-symmetric k-sets within nTET for 2 ≤ n ≤ 21
Table of frequencies of non-invertible PC k-sets. They always occur in mirror image pairs - as represented by k-gonal sub-polygons of regular n-gons. Each paired k-gon flips into the other over an axis passing through a particular one of its vertices or - if n is even - over one particular pair of vertices or of opposite edges, the particularity depending upon the set. Such non-symmetric k-sets constitute the vast majority of sets amongst the possible ones enumerated in the first table.
k\n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||||||||||
2 | ||||||||||||||||||||
3 | 2 | 2 | 4 | 6 | 8 | 10 | 14 | 16 | 20 | 24 | 28 | 32 | 38 | 42 | 48 | 54 | ||||
4 | 2 | 4 | 8 | 12 | 20 | 28 | 40 | 52 | 70 | 88 | 112 | 136 | 168 | 200 | 240 | |||||
5 | 4 | 8 | 20 | 32 | 56 | 84 | 128 | 180 | 252 | 336 | 448 | 576 | 740 | 924 | ||||||
6 | 6 | 12 | 32 | 58 | 112 | 180 | 300 | 444 | 672 | 948 | 1344 | 1816 | 2466 | |||||||
7 | 8 | 20 | 56 | 112 | 226 | 394 | 680 | 1088 | 1712 | 2568 | 3792 | 5418 | ||||||||
8 | 10 | 28 | 84 | 180 | 394 | 736 | 1360 | 2304 | 3852 | 6088 | 9480 | |||||||||
9 | 14 | 40 | 128 | 300 | 680 | 1360 | 2632 | 4736 | 8272 | 13788 | ||||||||||
10 | 16 | 52 | 180 | 444 | 1088 | 2304 | 4736 | 8980 | 16544 | |||||||||||
11 | 20 | 70 | 252 | 672 | 1712 | 3852 | 8272 | 16544 | ||||||||||||
12 | 24 | 88 | 336 | 948 | 2568 | 6088 | 13788 | |||||||||||||
13 | 28 | 112 | 448 | 1344 | 3792 | 9480 | ||||||||||||||
14 | 32 | 136 | 576 | 1816 | 5418 | |||||||||||||||
15 | 38 | 168 | 740 | 2466 | ||||||||||||||||
16 | 42 | 200 | 924 | |||||||||||||||||
17 | 48 | 240 | ||||||||||||||||||
18 | 54 | |||||||||||||||||||
19 | ||||||||||||||||||||
20 | ||||||||||||||||||||
21 | ||||||||||||||||||||
k/n | 2 | 4 | 12 | 28 | 60 | 124 | 254 | 504 | 986 | 1936 | 3720 | 7200 | 13804 | 26572 | 50892 | 97828 |
Table 2b - Number of non-symmetric k-sets within nTET for 22 ≤ n ≤ 31
k\n | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||
2 | ||||||||||
3 | 60 | 66 | 74 | 80 | 88 | 96 | 104 | 112 | 122 | 130 |
4 | 280 | 330 | 380 | 440 | 500 | 572 | 644 | 728 | 812 | 910 |
5 | 1152 | 1408 | 1716 | 2060 | 2464 | 2912 | 3432 | 4004 | 4660 | 5376 |
6 | 3224 | 4224 | 5386 | 6864 | 8564 | 10680 | 13084 | 16016 | 19332 | 23296 |
7 | 7632 | 10494 | 14256 | 19008 | 25080 | 32604 | 42002 | 53456 | 67496 | 84370 |
8 | 14200 | 20988 | 30144 | 42768 | 59360 | 81510 | 109988 | 147004 | 193708 | 253110 |
9 | 22400 | 35200 | 54150 | 81224 | 119680 | 172872 | 245960 | 344344 | 475904 | 648960 |
10 | 28920 | 49280 | 80904 | 129960 | 202976 | 311168 | 466624 | 688688 | 998420 | 1427712 |
11 | 31814 | 58324 | 103544 | 177504 | 296368 | 481598 | 765648 | 1191008 | 1818908 | 2728362 |
12 | 28920 | 58324 | 111732 | 207088 | 369688 | 642132 | 1083416 | 1786512 | 2877972 | 4547270 |
13 | 22400 | 49280 | 103544 | 207088 | 399100 | 741184 | 1335504 | 2337132 | 3988992 | 6648320 |
14 | 14200 | 35200 | 80904 | 177504 | 369688 | 741184 | 1429202 | 2671008 | 4840808 | 8547840 |
15 | 7632 | 20988 | 54150 | 129960 | 296368 | 642132 | 1335504 | 2671008 | 5167150 | 9688410 |
16 | 3224 | 10494 | 30144 | 81224 | 202976 | 481598 | 1083416 | 2337132 | 4840808 | 9688410 |
17 | 1152 | 4224 | 14256 | 42768 | 119680 | 311168 | 765648 | 1786512 | 3988992 | 8547840 |
18 | 280 | 1408 | 5386 | 19008 | 59360 | 172872 | 466624 | 1191008 | 2877972 | 6648320 |
19 | 60 | 330 | 1716 | 6864 | 25080 | 81510 | 245960 | 688688 | 1818908 | 4547270 |
20 | 66 | 380 | 2060 | 8564 | 32604 | 109988 | 344344 | 998420 | 2728362 | |
21 | 74 | 440 | 2464 | 10680 | 42002 | 147004 | 475904 | 1427712 | ||
22 | 80 | 500 | 2912 | 13084 | 53456 | 193708 | 648960 | |||
23 | 88 | 572 | 3432 | 16016 | 67496 | 253110 | ||||
24 | 96 | 644 | 4004 | 19332 | 84370 | |||||
25 | 104 | 728 | 4660 | 23296 | ||||||
26 | 112 | 812 | 5376 | |||||||
27 | 122 | 910 | ||||||||
28 | 130 | |||||||||
29 | ||||||||||
30 | ||||||||||
31 | ||||||||||
k/n | 187550 | 360628 | 692840 | 1333992 | 2568636 | 4954656 | 9562014 | 18480024 | 35741418 | 69208132 |
Table 3a - Number of symmetric k-sets within nTET for 2 ≤ n ≤ 21
Symmetric sets invert into themselves. A set which - when represented by a cyclotomic polygon (a convex polygon constructed from subsets of the n vertices of regular n-gons) - is indistinguishable from the original when flipped over at least one axis of symmetry. These are relatively rare, and get proportionally rarer as n increases. Musically they correspond to scales which, when traversed downwards from some fixed pitch class within the scale (dependent upon the set) by the same interval pattern used in traversing up the scale, do not leave the scale. E.g. The Dorian mode of the diatonic scale from its tonic note. No other mode of the diatonic inverts on their tonic, but will invert on - variously - supertonic, mediant, dominant etc.
k\n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 10 | |
3 | 1 | 2 | 1 | 3 | 3 | 3 | 4 | 5 | 4 | 6 | 6 | 6 | 7 | 8 | 7 | 9 | 9 | 9 | ||
4 | 1 | 2 | 3 | 4 | 6 | 8 | 10 | 12 | 15 | 18 | 21 | 24 | 28 | 32 | 36 | 40 | 45 | |||
5 | 1 | 3 | 3 | 6 | 5 | 10 | 10 | 15 | 15 | 20 | 21 | 28 | 28 | 36 | 35 | 45 | ||||
6 | 1 | 3 | 3 | 8 | 10 | 17 | 20 | 32 | 33 | 53 | 56 | 78 | 84 | 116 | 117 | |||||
7 | 1 | 4 | 4 | 10 | 10 | 20 | 19 | 35 | 35 | 56 | 56 | 84 | 84 | 119 | ||||||
8 | 1 | 4 | 5 | 12 | 15 | 32 | 35 | 64 | 70 | 120 | 126 | 200 | 210 | |||||||
9 | 1 | 5 | 4 | 15 | 15 | 33 | 35 | 70 | 68 | 126 | 126 | 207 | ||||||||
10 | 1 | 5 | 6 | 18 | 20 | 53 | 56 | 120 | 126 | 245 | 252 | |||||||||
11 | 1 | 6 | 6 | 21 | 21 | 56 | 56 | 126 | 126 | 252 | ||||||||||
12 | 1 | 6 | 6 | 24 | 28 | 78 | 84 | 200 | 207 | |||||||||||
13 | 1 | 7 | 7 | 28 | 28 | 84 | 84 | 210 | ||||||||||||
14 | 1 | 7 | 8 | 32 | 36 | 116 | 119 | |||||||||||||
15 | 1 | 8 | 7 | 36 | 35 | 117 | ||||||||||||||
16 | 1 | 8 | 9 | 40 | 45 | |||||||||||||||
17 | 1 | 9 | 9 | 45 | ||||||||||||||||
18 | 1 | 9 | 9 | |||||||||||||||||
19 | 1 | 10 | ||||||||||||||||||
20 | 1 | |||||||||||||||||||
21 | ||||||||||||||||||||
k/n | 1 | 2 | 3 | 6 | 7 | 14 | 18 | 28 | 39 | 62 | 81 | 126 | 175 | 246 | 360 | 510 | 728 | 1022 | 1485 | 2030 |
Table 3b - Number of symmetric k-sets within nTET for 22 ≤ n ≤ 31
k\n | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 10 | 11 | 11 | 12 | 12 | 13 | 13 | 14 | 14 | 15 |
3 | 10 | 11 | 10 | 12 | 12 | 12 | 13 | 14 | 13 | 15 |
4 | 50 | 55 | 60 | 66 | 72 | 78 | 84 | 91 | 98 | 105 |
5 | 45 | 55 | 55 | 65 | 66 | 78 | 78 | 91 | 90 | 105 |
6 | 160 | 165 | 212 | 220 | 280 | 282 | 358 | 364 | 444 | 455 |
7 | 120 | 165 | 165 | 220 | 220 | 286 | 285 | 364 | 364 | 455 |
8 | 320 | 330 | 480 | 495 | 700 | 715 | 980 | 1001 | 1344 | 1365 |
9 | 210 | 330 | 327 | 495 | 495 | 711 | 715 | 1001 | 997 | 1365 |
10 | 452 | 462 | 782 | 790 | 1272 | 1287 | 1987 | 2002 | 2980 | 3003 |
11 | 251 | 462 | 462 | 792 | 792 | 1287 | 1287 | 2002 | 2002 | 3003 |
12 | 452 | 462 | 900 | 924 | 1696 | 1710 | 2968 | 3003 | 4962 | 5005 |
13 | 210 | 462 | 462 | 924 | 923 | 1716 | 1716 | 3003 | 3003 | 5005 |
14 | 320 | 330 | 782 | 792 | 1696 | 1716 | 3411 | 3432 | 6400 | 6435 |
15 | 120 | 330 | 327 | 790 | 792 | 1710 | 1716 | 3432 | 3425 | 6435 |
16 | 160 | 165 | 480 | 495 | 1272 | 1287 | 2968 | 3003 | 6400 | 6435 |
17 | 45 | 165 | 165 | 495 | 495 | 1287 | 1287 | 3003 | 3003 | 6435 |
18 | 50 | 55 | 212 | 220 | 700 | 711 | 1987 | 2002 | 4962 | 5005 |
19 | 10 | 55 | 55 | 220 | 220 | 715 | 715 | 2002 | 2002 | 5005 |
20 | 10 | 11 | 60 | 65 | 280 | 286 | 980 | 1001 | 2980 | 3003 |
21 | 1 | 11 | 10 | 66 | 66 | 282 | 285 | 1001 | 997 | 3003 |
22 | 1 | 11 | 12 | 72 | 78 | 358 | 364 | 1344 | 1365 | |
23 | 1 | 12 | 12 | 78 | 78 | 364 | 364 | 1365 | ||
24 | 1 | 12 | 12 | 84 | 91 | 444 | 455 | |||
25 | 1 | 13 | 13 | 91 | 90 | 455 | ||||
26 | 1 | 13 | 14 | 98 | 105 | |||||
27 | 1 | 14 | 13 | 105 | ||||||
28 | 1 | 14 | 15 | |||||||
29 | 1 | 15 | ||||||||
30 | 1 | |||||||||
31 | ||||||||||
k/n | 3007 | 4094 | 6030 | 8184 | 12159 | 16352 | 24381 | 32766 | 48849 | 65534 |
Table 4a - Number of rotationally repeating k-sets within nTET for 2 ≤ n ≤ 21
Technically non-symmetric (these PC sets cannot be flipped over some axis and remain 'the same'). But they are cyclicly equivalent because - as polygons - they do not require a full rotation of 360 degrees to look the same), they occur as congruent clockwise and anti-clockwise pairs. They do not show up in the nTET universe until n is 12. The first bi-cyclic polygonal pattern (a yin yang) requires two consecutive segments of three contiguous edges of three distinct sizes. These smallest distinct sizes must be 1, 2 and 3 (forming a segment of 123 or 132) and it must repeat, as either 123123 or 132132. Clearly these are both mutually inverse and mutually complementary hexagons, relatively clockwise/anticlockwise, in 12TET. Larger order patterns are the triskelion (Manx Legs), the tetraskelion (fylfot, gammadion, svastika, etc). The 30TET space is the first capable of supporting a pentaskelion (with the aforementioned uninvertible segment 123 or 132, repeated five times).
k\n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||||||||||
2 | ||||||||||||||||||||
3 | ||||||||||||||||||||
4 | ||||||||||||||||||||
5 | ||||||||||||||||||||
6 | 2 | 2 | 4 | 6 | 8 | |||||||||||||||
7 | ||||||||||||||||||||
8 | 2 | 4 | 8 | 12 | ||||||||||||||||
9 | 2 | 2 | ||||||||||||||||||
10 | 4 | 8 | 20 | |||||||||||||||||
11 | ||||||||||||||||||||
12 | 6 | 12 | 2 | |||||||||||||||||
13 | ||||||||||||||||||||
14 | 8 | |||||||||||||||||||
15 | ||||||||||||||||||||
16 | ||||||||||||||||||||
17 | ||||||||||||||||||||
18 | ||||||||||||||||||||
19 | ||||||||||||||||||||
20 | ||||||||||||||||||||
21 | ||||||||||||||||||||
k/n | 2 | 4 | 12 | 30 | 60 | 4 |
Table 4b - Number of rotationally repeating k-sets within nTET for 22 ≤ n ≤ 31
k\n | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||
2 | ||||||||||
3 | ||||||||||
4 | ||||||||||
5 | ||||||||||
6 | 10 | 14 | 16 | 20 | 24 | |||||
7 | ||||||||||
8 | 20 | 28 | 40 | 52 | 70 | |||||
9 | 4 | 6 | 8 | |||||||
10 | 32 | 56 | 84 | 128 | 180 | |||||
11 | ||||||||||
12 | 32 | 2 | 112 | 8 | 2 | 12 | ||||
13 | ||||||||||
14 | 20 | 56 | 112 | 226 | 394 | |||||
15 | 4 | 8 | 2 | |||||||
16 | 10 | 28 | 84 | 2 | 394 | |||||
17 | ||||||||||
18 | 14 | 40 | 6 | 128 | 12 | |||||
19 | ||||||||||
20 | 16 | 52 | 180 | |||||||
21 | 8 | |||||||||
22 | 20 | 70 | ||||||||
23 | ||||||||||
24 | 24 | |||||||||
25 | ||||||||||
26 | ||||||||||
27 | ||||||||||
28 | ||||||||||
29 | ||||||||||
30 | ||||||||||
31 | ||||||||||
k/n | 124 | 206 | 504 | 28 | 630 | 1378 |
No comments:
Post a Comment